
Duo Labs Presents

Bug Hunting
Drilling Into the Internet of Things (IoT)

This page intentionally left blank.

AUTHOR

MARK LOVELESS

DESIGNER

CHELSEA LEWIS

PRODUCER

PETER BAKER

© 2017 Duo Security, Inc.

THE TL;DR 1

BACKGROUND 1

THE BEST PLACE TO LOOK 2

THE DIGGING 3

OUR EXAMPLE TARGET 4

GETTING STARTED 6

THE APP 7

BLUETOOTH 8

THE NETWORK 11

PRIVACY 15

PHYSICAL SECURITY 17

EXPLOIT SUMMARY 18

VENDOR RESPONSE 21

APPENDIX A: BYPASSING CERTIFICATE PINNING 22

APPENDIX B: DISCLOSURE PROCESS 24

1

The TL;DR

Background
The Internet of Things, or IoT as all the cool kids say, is always in the

news as of late. There are a number of these new devices that are

useful and have become a “must-have” item, but many of these new

items seem to have been given an IP address or Bluetooth chip simply

to sell to a market willing to have the latest tech - regardless of how

useless the device seems. Sometimes the introduction of “smart” to

a device makes sense and changes the landscape completely - your

cellphone becoming “smart” and talking to the internet is arguably the

best example of this. Products like a smart toaster? Not so much.

There is a danger in approaching IoT from a security research

perspective - mainly that it is nothing more than stunt hacking and not

worthy of researchers’ time and effort. Unfortunately as these devices

become commonplace, there are areas of concern for the average

consumer that validate the research - especially if a device has security

elements or utilizes personal user data.

While this was originally going to be a report on a particular smart

device, it has since turned into a report on how to approach this brave

new world of IoT from more of a software perspective (as opposed to

more of a hardware perspective), and we’ll simply use a smart device

as a guinea pig to show how it is done. As a researcher, I can safely

state I am somewhat lazy, as I’d prefer to simply hoodie up and start

shell gathering. So I wanted to come up with a process that was quick

and thorough for examining IoT technology.

We try to come up with a way to speed up the process of evaluating

IoT devices, then pick an IoT device to try the process out on. The

process we developed, while software-focused, yielded results fairly

quickly on our target app:

• Static passwords used for updates to a
master database located on the vendor
website were hard-coded into the
accompanying IoT app.

• The IoT device in question was expensive,
but could be readily identified by a potential
thief remotely via Bluetooth scanning.

• GPS data used for inventory tracking in
the event of lost or stolen devices could
be forged.

A lot of security measures were in fact done correctly, and much of

what one might call “low hanging fruit” was protected, which was

impressive.

https://duo.com/blog/strengthening-the-signal-in-the-noise-iot-security-and-stunt-hacking
https://blog.securityevaluators.com/the-introductory-iot-hardware-hacking-tool-box-389c4605329f
https://www.google.com/search?q=hackers+in+hoodies&tbm=isch

2

The Best Place
to Look
Where does one look for these IoT bugs? It seems like the device itself

is the most obvious one, but it is usually not the case when you are

looking for the most impactful bug. For example, if you know the type of

chipset in the IoT device, then you know what the device is capable of

doing and this should guide the investigation to a degree. But honestly,

the best place to look is the associated app that will reside on the

phone. Most IoT devices rely on the owner’s phone to act as a router

to the cloud, so all information typically passes through and can be

examined in one way or another.

In the future, many IoT devices will not be as reliant on moving data

via Bluetooth to a phone. As battery life and transmission of data

improves, IoT devices will be moving data via Wi-Fi or even LTE

(Long-Term Evolution, the current standard most commonly used

by telecommunication companies to move voice and data via smart

phones over their networks). But until then, the phone is the best way

to examine communication between IoT device and cloud.

3

The Digging
So what does one look for?
Here are the items currently on the checklist:

 · Making sure the basics are covered — encrypted communications,

certificate pinning, secure Bluetooth pairing, storage of data on

phone/cloud secure, no hardcoded passwords, etc.

 · Ensuring encryption used is strong, not susceptible to easy

cracking, replay, etc. in the case of SSL, strong cipher suites, etc.

 · Determining no unintended information leak. This includes excessive

permissions, or unintended data in uploads.

 · Verifying the application is not using out-of-date libraries or SDKs

that have known security issues.

 · Checking that security elements perform as designed and cannot

be bypassed.

 · Ensuring that values or parameters cannot be changed to

cause issues during use of the application or IoT device.

 · Designing real-world attack scenarios, then trying to connect the

dots to see if they can be implemented using a combination of flaws

found and existing limitations (or lack thereof) in the technology

two-factor involved.

We will do Bluetooth scanning for the device and gather details

remotely, perform static analysis of the app that’s on the phone, look

at whatever data the app stores and what else it accesses. We will

examine traffic between app and device, as well as app and cloud.

During the process we will develop real-world attack scenarios and try

to either prove they are real, or show how they will not work. The result

should be a fairly clear picture of exactly how safe (or unsafe) this

device is.

Like most researchers we will not just start at the top and move to the

bottom of our list, we will perform most of the items in parallel, and will

most likely encounter moments where one issue will cause us to jump

between steps to help get the full picture. My personal preference is to

set up monitoring between device and app as well as between app and

internet first, then start using the app and device as intended to start

gathering data. I jump between app, device, monitoring, and source

code. I also Google the hell out of anything I don’t understand or that

looks odd.

4

The target we are going to look at is the

Milwaukee ONE-KEY M18 Fuel 1/2" Drill/

Driver, from Milwaukee Tool. This is a

cordless, brushless drill from a reputable

and somewhat high-end tool company.

ONE-KEY is the “smart” part of the tool, and is

something available on a number of different

Milwaukee Tool products.

Before you eyeroll too much, there are some

actual interesting things you can do, at least

per the website and various videos from

Milwaukee Tool. If you have multiple smart

tools, you can track all of your inventory via

the app (and the Milwaukee Tool website). If

you are a contractor with a large inventory of

tools, that has an appeal. Anyone else with

a ONE-KEY app on their Android or iPhone

will scan for tools in the area constantly, and

discretely phone home the GPS coordinates

of any tool encountered to the Milwaukee

Tool website, so if your tool walks away and

ends up somewhere else and is scanned by

someone else, you can locate a missing or

even a stolen tool.

Our
Example Target

The drill. When the robots rise up, they’ll use these as weapons.

https://www.milwaukeetool.com/power-tools/cordless/2705-20
https://www.milwaukeetool.com/power-tools/cordless/2705-20
https://www.milwaukeetool.com/ONEKEY

5

You can remotely disable the tool from working in case it is stolen. You can build multiple profiles

for each tool in the app on your phone, each with different settings (speed, torque, etc) for

different tasks, and then push the profiles to the drill. For example, if there are complaints that

some of your crew are over-tightening wood screws and causing issues for others on a job site,

it can be addressed by updating and pushing out a profile that adjusts the torque. You can add

notes to the tool so you know who checked it out and other handy information.

Bluetooth is active, four tool presets to edit/upload via your phone.

Now maybe this stuff isn’t interesting to you the computer nerd, but as you can see from a

just a few highlights above, maybe this smart tool thing has a point. And frankly, from just a

regular “tool” standpoint, this is one hell of a nice drill. Even without the ONE-KEY stuff, this is

considered a premium tool and is easily 4-5 times more expensive than the drill I have. In fact,

this is the nicest power tool I’ve ever used. But the ONE-KEY part opens up some interesting

possibilities for us to explore.

6

Getting Started
After making sure everything worked as designed between app, drill,

and the internet, the latest APK was downloaded for the Milwaukee

ONE-KEY application (note: the main version looked at during this

process in Jan/Feb 2017 was 3.0.2, although a few other versions after

that were glanced at, most changes to those versions were to the GUI).

Reversing Android apps is a lot easier and I used a Nexus 5 specifically

for experimentation, but usually run the iOS version on my iPhone 6 so

there is a pristine setup in case I need to check against an unaltered

version, particularly for regular app usage.

For Bluetooth traffic, I use a combination of different tools. I have

several USB devices, including an SMK-Link Nano Dongle

Bluetooth 4.0, a Sena UD-100 (with different antennas that extend

the range up to half a mile), and an Ubertooth One that have all been

tested to work with my Ubuntu 16.04 desktop system.

There are a variety of command line tools on Linux I use, such as

hcitool, btscanner, and the various command line tools that work with

the Ubertooth (all of the ubertooth-* programs).

I also use a couple of apps - LightBlue Explorer from Punch Through,

and nRF Connect from Nordic Semiconductor. The reason for the

amount of monitoring tech is because monitoring Bluetooth - especially

sniffing - is extremely hard to do accurately. Most presentations

involving Bluetooth that one sees at various security and hacker

conferences all have the “sniffing Bluetooth is hard” slide in the deck.

And many of the tools do not give the same results so you end up

combining output from multiple sources to get a complete picture.

Since the advent of 4.0, the whole Bluetooth Low Energy (BLE)

standard was integrated with Bluetooth Classic and it is just considered

plain old Bluetooth now. Not all of the sniffing tools look at the

Bluetooth 4.2 spec the same (4.2 is the latest spec with wide adoption

as of this writing), and since the authors of each tool had different

needs, they may not return the same data elements you might be

looking for. This is further complicated by weird implementations by the

IoT vendor and so on.

For network traffic heading to the internet, normally a sniffer such as

Wireshark is more than fine. However, most traffic from applications

these days is done over SSL, so extra steps are needed for sniffing.

Probably the easiest method for monitoring is to use mitmproxy. Using

an old laptop running Ubuntu with an Ethernet connection as well as

configuring the wireless interface to run in ad-hoc mode advertising

an access point, one can run mitmproxy in transparent mode and

capture the encrypted traffic.

If the application uses certificate pinning, there are more steps to be

performed to bypass it for testing purposes - basically by decompiling

the APK, tweaking the code that checks the pinning to return nulls,

recompiling, and signing the app with your own key. For details on

these steps, refer to Appendix A below.

For static analysis, one tool that comes in handy is the open-sourced

apktool running on Linux. It is great for a quick decompile and

some quick searching for low-hanging fruit. It is also a key tool for

recompiling the APK after you’ve disabled pinning. Of course no

Linux workbench should be without adb for having a look at the

Android-based phone. The one commercial tool I am using right now

is JEB. Decompiling into Java makes things much easier to read than

reading smali, and it is feature-filled enough that most people won’t

require much of anything else.

https://www.smklink.com/products/nano-dongle-bluetooth-v4-0-le-edr
https://www.smklink.com/products/nano-dongle-bluetooth-v4-0-le-edr
http://www.senanetworks.com/ud100-g03.html
http://www.senanetworks.com/Home/sn-bluetooth-accessories/
https://greatscottgadgets.com/ubertoothone/
http://linuxcommand.org/man_pages/hcitool1.html
https://packages.debian.org/sid/net/btscanner
https://github.com/greatscottgadgets/ubertooth/wiki/Getting-Started
https://itunes.apple.com/us/app/lightblue-explorer-bluetooth/id557428110?mt=8
https://punchthrough.com/
https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp&hl=en
http://www.nordicsemi.com/
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.wireshark.org/
https://mitmproxy.org/
http://docs.mitmproxy.org/en/latest/modes.html#transparent-proxy
https://ibotpeaches.github.io/Apktool/
https://developer.android.com/studio/command-line/adb.html
https://www.pnfsoftware.com/jeb2/

7

The App
It helps to explore the app used to talk to the IoT device and the cloud,

just to see what it is capable of and to help plot out a course of action.

It is easier to obtain and work with application source code by grabbing

the Android version, so after grabbing the latest APK, apktool was able

to quickly examine the disassembled Milwaukee ONE-KEY app in smali

format (this is out of laziness, I started a full disassembly in JEB but

that takes a bit and I wanted to get a quick peek).

When an app is developed, most developers don’t design from the

ground up, they use libraries to make the process go easier. The first

thing to do is look to see what libraries are used and to check their

versions to ensure they are running a library that does not include a

security issue. The Flurry SDK is used to track app usage and report

it back to the app developers. While previous versions of Flurry had

security issues, the ONE-KEY app uses a later version. The same for

OkHttp - an earlier version had an issue with the handling of certificate

pinning - but ONE-KEY is using the latest version of that library. In

fact, all of the libraries used by ONE-KEY were the latest at the time of

review.

A note on library version checking - some libraries include it in their

source in some form or fashion. Others are not so obvious, you have

to figure out what is a recent feature or fix that was added to the SDK,

and look for that feature or fix.

In regards to certificate pinning, it helps to search through looking

for various things pertaining to pinning, such as “X509” and

“TrustManager,” to find the pinning stuff quickly. Sure enough, they

are using the OkHttp library for pretty much all of their client internet

functions, including SSL connectivity and certificate pinning. The full

disassemble with JEB to see it all in Java made it quite readable.

All in all, this was fairly impressive. Use of SSL exclusively for

communications, certificate pinning, latest libraries - but then there is

the bad.

There are base64-encoded credentials in the app for talking to the

Milwaukee Tool web presence. This more or less undoes a lot of the

good. There are some mitigating factors we will discuss later, in that

these factors imposed some limits. I did not use these credentials,

even for just exploring and poking around (because it is 2017, not

2001, as well as the whole felony aspect), but as they are used to

establish authentication for the app itself and to get a session token

for all transactions, they become the keys to the kingdom - master

credentials as it were.

User accounts are tracked separately (via email and password) but

one of the things ONE-KEY does is offer GPS tracking of ONE-KEY

tools via the app - even if the tool does not belong to you. For example,

if the ONE-KEY app is installed on someone’s smartphone and they

walk by a job site with a Milwaukee ONE-KEY tool, the app will “see”

the tool and phone home with GPS coordinates stating its location. To

update the tool’s entry in the main database with the GPS location and

a timestamp requires credentials. While the passerby’s user account is

not associated with this tool on the job site, it is not in their “inventory”

so the user credentials can’t alter the data on a tool they don’t own -

but this master ID and password statically stored in the app can.

Data used by the app is stored in a database called mke.db, and while

its data can be rewritten offline and then uploaded back to the phone,

there was no method to allow for illicit data values to find their way onto

the tool (e.g. adjusting the RPM to unsafe levels). To push illicit data to

the app required pulling it into the application, and this cleaned up the

altered data. Pushing it directly seemed like it could be a possibility via

Bluetooth directly, however the difficulties in recording the Bluetooth

packets to see how this is done (see the Bluetooth section) prevented

designing a test for this possibility.

A user of the app can create a “guest” account with a password, and

assign a few different rights to it including editing of tool controls,

locking and unlocking of tools, and viewing and editing of inventory.

These controls are enforced against tools via queries to the master

database with the identity of the tool in question, and checking against

what the owner of the tool has allowed.

https://github.com/JesusFreke/smali/wiki
https://github.com/JesusFreke/smali/wiki
https://developer.yahoo.com/flurry/docs/
http://square.github.io/okhttp/

8

Bluetooth
The Bluetooth electronics for the drill are buried in the base, although there is a coin cell for

Bluetooth power when the RedLithium battery is not attached.

Coin cell is behind a small panel that is underneath where the RedLithium battery attaches

As suspected, a normal hcitool scan did not show the drill, but running hcitool with the lescan

option for Bluetooth Low Energy (BLE) devices did, after a some trial and error by turning off

other nearby Bluetooth devices, the drill’s MAC address was obtained. Armed with that I was

able get a little more info:

thegnome@fang:~/Projects/milwaukee$ hcitool leinfo 00:07:80:CF:76:BC

Requesting information ...

 Handle: 75 (0x004b)

 LMP Version: 4.0 (0x6) LMP Subversion: 0x3

 Manufacturer: Bluegiga (71)

 Features: 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00

thegnome@fang:~/Projects/milwaukee$

9

Light Explorer screen grab, note the BLE112

The important thing to note is that this tells us the tool is mainly speaking BLE, and does not

use features from the full Bluetooth 4.2 spec which include a number of security features. This

suggests a possibility for flaws involving the BLE traffic itself between app and drill. For example,

there is no security during the pairing process, it uses the method known as “Just Works.” There

is no security code to look up, it just does the pairing (technically there is a security code, it is

000000, but the tool offers no method to display a code so this is what is done).

Bluegiga itself has no known vendor-specific vulnerabilities that I could find from Googling,

and the “71” on the manufacturer line is most likely a build version. This particular build version

places it at about a 2013 release year, and although this suggests an older version, it is

considered a stable one by most developers. A probe from LightBlue Explorer also helped, with

the model number string BLE112 referring to a specific Bluegiga product:

https://www.bluetooth.org/tpg/refnotes/ble112_datasheet1.pdf

10

After unsuccessfully trying btscanner, I used ubertooth-btle once I had the MAC address, and

tried pairing multiple times as well as uploading a profile while attempting to monitor the traffic

between drill and app. As stated, sniffing Bluetooth traffic is a non-trivial task, and after spending

the better part of a day I was still dropping a few packets (the same task would give a different

packet count on the few times I got anything at all). The command line options I used that gave

the best results were as follows:

thegnome@fang:~$ ubertooth-util -f -t00:07:80:CF:76:BC -r drill09.pcap

The encouraging thing was that it appeared encryption was in use due to a lack of plaintext in

some of the packets being exchanged during a profile update, which was a pleasant surprise.

The BLE112 supports AES 128 natively, and the source code suggested AES 256, but the mere

presence was nice regardless of key size used. To give you an idea of the effort of acquiring

those packets, it took 7 pairings before a capture with an initial CONNECT packet was

accurately sniffed, even though there was one happening with every pairing. It took a total of

21 captures to get a full pairing session. That was just the pairing - I never got a complete data

transfer of a profile update, I am assuming the traffic was encrypted based upon looking at

several individual packets from the profile update as there was no plaintext.

There were no major flaws uncovered, with the exception of being able to easily connect to the

device using Bluetooth apps since a BLE112 supports up to four simultaneous connections.

As you can see, Bluetooth examination is entirely dependent upon both the quality of the tools

being used, and the amount of time one has to invest in the process. As a researcher, finding

Bluetooth implementation flaws between an app and a power tool is not as important as finding

flaws in something more critical (e.g. the SSL implementation), and so between working on other

projects, (most researchers are usually working on more than one project at any given moment),

a researcher has to evaluate how much time they are willing to put into it. At best, I can say for

this project that if there is a flaw in the Bluetooth communications, the average attacker with

average Bluetooth attack tools will not be able to exploit it.

11

The Network
The network traffic uses SSL exclusively and certificate pinning was verified to be working as

intended. The cipher used by SSL is always ECDHE-RSA-AES128-GCM-SHA256. While not as

strong as AES 256, it is still quite robust and certainly considered safe, and it has the advantage

of being less CPU intensive. This helps preserve some battery usage for mobile clients (as an

example, many Google-written apps use this particular cipher with battery life in mind).

After the SSL handshake, there is a short exchange to identify the version of the app (in case

an update is available). Then a Basic Authentication is done using the previous-mentioned

base-64 encoded credentials, along with the username and password of the end user. If the

username and password are valid, an access token in the form of an OAuth 2 bearer token is

returned.

While examining the traffic, it became clear that all new inclusions and updates to any data

associated with a tool owner and their tools required this bearer token before sending and

retrieving data from the website. Having the bearer token is great, although this token has an

unusually long time until expiration - 365 days. Normally, a bearer token is set to expire after an

hour or two.

Login response. Bearer token, user_id in UUID format. Note the “expires in” value.

https://en.wikipedia.org/wiki/Basic_access_authentication

12

To help track the user during access, when the bearer token is returned, a unique “user_id” value

is also returned in the UUID format of xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx, assuming the end

user’s username and password were correct. Both the user_id and bearer token are used until

the app has to login again, when a new bearer token and user_id are assigned. UUIDs used by

the ONE-KEY app and by Milwaukee Tool’s website all appear to be RFC 4122 compliant.

thegnome@fang:~/Projects/milwaukee$ uuid -d bb9dd2d8-19b4-4dac-8a40-

7674c41054c6

encode: STR: bb9dd2d8-19b4-4dac-8a40-7674c41054c6

 SIV: 249385102245824204800662671554287523014

decode: variant: DCE 1.1, ISO/IEC 11578:1996

 version: 4 (random data based)

 content: BB:9D:D2:D8:19:B4:0D:AC:0A:40:76:74:C4:10:54:C6

 (no semantics: random data only)

thegnome@fang:~/Projects/milwaukee$

The bearer token stored on the mobile device is a security risk when it has this long of a

lifespan, and coupled with the user_id, it gives an attacker who has compromised the phone the

ability to act as the user and manipulate such items as inventory.

Most operations require the user_id for them to work, although a few don’t. The main one

discovered was the GPS location update of the tool (although this makes sense, since it is

required for the whole process of GPS updates from any phone about any tool). And while not

quite as important, one can also rewrite the profile data that is stored on the tools themselves by

sending illicit updates to the Milwaukee Tool website and allowing the victim user to download

them later.

The server returning data to the client always uses X-Content-Type-Options set to “nosniff,”

X-Frame-Options set to “SAMEORIGIN,” and X-XSS-Protection set to “1; mode=block.” This is

good as it helps prevent a number of security issues:

13

X-Content-Type-Options: nosniff.
Basically, this tells the browser to not sniff the response buffer in an attempt to identify the

MIME type of content being retrieved from a server, and is particularly used in cases where

data is being uploaded by users. A few browsers honor this, including Internet Explorer and

Chromium. For example, if the server has set the MIME type of the content to “application/

pdf,” but the browser scans the buffer causing it to identify the content as something else, the

browser overrides the server’s header specifying the content. Nosniff prevents that. To make it

clearer, think about it in terms of telling the difference between binary and text data. And if you

think there should be no issue with an app on a phone, remember you can also access ONE-

KEY data from the ONE-KEY server using a regular browser on a regular computer.

X-Frame-Options: SAMEORIGIN.
This setting enforces iframes from being loaded from other servers, again a decent protection

against web trickery when user content is allowed to be uploaded. For example, this will help

prevent clickjacking.

Login request. End user password requires minimal one uppercase letter and 8 chars long,

eliminating the usual “hunter2”.

https://www.owasp.org/index.php/Clickjacking

14

X-XSS-Protection: 1; mode=block.
This stops web pages from loading that contain cross-site scripting (XSS) attacks. The “1” enables

detection, and “mode=block” causes the page to not load in the browser.

Note the HTTP header responses.

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

15

Privacy
The application does collect information on app usage and a bit about the phone the app is

loaded onto. Outside of simply analyzing how their app makes its calls back to the website, the

ONE-KEY achieves part of this via Flurry, a popular library used to gather app data. None of the

data is particularly invasive, which is good.

The app allows you to take pictures and “attach” them to the tool in the database, so the app

requires access to your camera. This way, you can take a picture of the tool perhaps in its

environment, and you can also attach a photo of a receipt as well - allowing you to know when it

goes into service.

Part of the data Flurry returns. It also reports phone type and build version of the OS.

Since one of the selling points is a “find my power tool” function in the event of loss or theft,

the ONE-KEY app gathers GPS data via normal phone APIs like other apps do, such as Google

Maps. Some other odd methods in a few other odd apps have been known to use different

methods, so it is good to check for this just in case. For example, when we looked at the

Chinese cell phones, they were using a plaintext web-based location service. The Apple Watch

does this as well, or at least the last time I looked - if you use the Maps app while your paired

iPhone is off or out of range, it will resort to a plaintext web-based location service, because it

doesn’t have the cellular capabilities that the iPhone does.

https://duo.com/blog/unicorn-wrangling-101-what-is-a-backdoor

16

Most common Bluetooth scanning tools that support BLE will easily detect Milwaukee Tools that

have ONE-KEY. There is a setting one can make in the Milwaukee ONE-KEY app that “hides” a

tool in your inventory from other app users - preventing another Milwaukee ONE-KEY app user

from seeing your tool within their app. This does not restrict the tool from being scanned via

Bluetooth scanners, as the hiding feature does not put the power tool in undiscoverable mode.

As the name of the Bluetooth device is hard-coded into the power tool, a quick scan with any

number of Bluetooth scanners allows one to fingerprint a Milwaukee Tool with ONE-KEY very

easily.

The MKE part kind of gives it away in multiple scanning tools, including Nordic’s nRF Connect

app.

While having MKE in the name is enough, looking at the Manufacturer Name String after

connecting gives you “MILWAUKEE TOOL”.

17

Physical Security
When checking an IoT device, it is rare that there are any physical security elements, but in this

case, we have a couple.

To push the profiles to the drill, they have to be loaded into the app which would rewrite the

levels to proper constrained levels. Additionally, it was impossible to push updates to the drill

without explicitly making a physical adjustment on the drill itself:

Normal usage on the left, Bluetooth profile update mode on the right.

This helps prevent a profile update during power tool usage, as one has to manually make the

adjustment to allow the update.

It is possible to lock the drill remotely with the ONE-KEY app. This could come in handy in case

you want to shut off a drill that has been lost or stolen. Once the drill is locked, it simply does not

work (it appears that the power from the battery to the drill’s motor is cut).

To turn this off, you need a valid bearer token and a valid user_id associated with the locked drill

- not easy without access to a phone that has the latter stored. It might be possible if one could

obtain the “guest” credentials for an account (the ONE-KEY app allows you to create a guest

account that, by default, can manipulate inventory items), this could allow an attacker to remove

the stolen item from inventory after unlocking the drill.

18

Vulnerability Summary
During the course of this exploration, several flaws were identified. Each of these flaws were either tested for or at least analyzed to see if they

were possible. As noted above, several were found, and here is a list of all of them (two have been assigned CVE IDs):

Privileged Stored Credentials
The ONE-KEY app includes master credentials in base-64 encoded

format that are needed to obtain a bearer token. The bearer token

allows for read-write access to information stored in Milwaukee

Tool’s website. Most operations also require the current user_id value,

however not all operations do - the main one that does not require it is

the updating of the GPS location of any Milwaukee Tool equipped with

ONE-KEY.

CVE: CVE-2017-3214

Recommendation to vendor: Use a more secure method of remote

access for the credentials needed for the app.

User remediation: None.

Stored Bearer Tokens with Long Expiration
Times
A typical bearer token has an expiration time of 1-2 hours, these have

an expiration time of one year, and are stored on the phone for reuse

while the phone is logged in. In the event of a compromised phone, it is

possible for an attacker to gain access to the bearer token and use it.

This also means that the user_id - which is also stored locally - could

be used by an attacker with this bearer token to perform user actions.

CVE: CVE-2017-3215

Recommendation to Vendor: Expire the bearer token after a much

shorter timeframe, such as 1 or 2 hours.

User Remediation: Log out of the app after each use as a new Bearer

token is issued with each login.

Remote Device Fingerprinting
A simple Bluetooth scan from a smartphone with a free app will quickly

identify a Milwaukee Tool with ONE-KEY from a distance of 50-100

feet. Using Linux-based tools such as hcitool and the built-in antenna

will get the same results, but using a more powerful antenna can allow

detection between a quarter and half mile (depending on various

conditions).

CVE: None.

Recommendation to vendor: Non-obvious name of device that does

not include MKE in the name. While it would be nice to put the tool

in non-discovery mode (via the “hiding” feature that prevents other

ONE-KEY app users from seeing the tool), this might complicate other

features.

User remediation: A tool owner could remove the coin cell battery

and disconnect the RedLithium battery. This prevents the ONE-KEY

tool’s Bluetooth from broadcasting in discoverable mode. The owner

could simply hook up the RedLithium only for actual usage, minimizing

exposure. On the flip side, this is probably the exact technique a thief

would use to help prevent the tool from being found as well.

GPS Reporting Subject to Spoofing
For details, see “GPS exploit” in the Exploit Summary section below.

Basically, one can used data obtained from some of the other

vulnerabilities to forge GPS queries to make the tool appear to be in a

location it is not.

CVE: None.

Recommendation to Vendor: Correcting the other vulnerabilities

would prevent this exploit from working.

User Remediation: None.

https://cve.mitre.org/

19

Exploit Summary
Sometimes the tricky part when finding vulnerabilities is to find ways to practically exploit them. For the application of this technique for IoT

devices, one has to think about how the devices are used in the real world. Sometimes a vulnerability can seem devastating or extremely limited,

but once applied to the real world and a real device, the opposite might be true.

Tracking Exploit
This is the most obvious exploit found. Having the last three initials in

any Bluetooth device as MKE points to it potentially being a power tool,

and a quick check after connecting shows the manufacturer to confirm

it. A serious thief could simply drive around with their (probably stolen)

laptop and $100 worth of Bluetooth interface and antenna, and locate

ONE-KEY hardware within a quarter to half mile radius. Using signal

strength, the thief could zero in on the location. The thief could then

scan for nearby smartphones and fitness trackers (FitBits etc) to see if

there are nearby witnesses or perhaps even the owner, and wait for the

location to be clear of mobile Bluetooth devices indicating people.

It should be noted that most people who own power tools tend to

put them in the same place as all the other tools, like a tool chest or

cabinet in the garage or shed at a job site. The thief could then steal

not just the Milwaukee Tool running ONE-KEY, but the victim’s entire

cache of tools. In fact, the thief might just steal several thousand

dollars worth of the “dumb” tools, and leave behind all of the ONE-

KEYs! A bold thief might return in a couple months after insurance (or

the victim’s cold hard cash) replaced the stolen items, and have a lot of

newer tools to pick from.

GPS Exploit
The elements needed for GPS location updates of a ONE-KEY power

tool between the ONE-KEY app and Milwaukee Tool web presence

require the following:

1. The master user/password from the app.

2. A valid account and password.

3. A valid Bearer token.

4. The tool’s unique ID.

All of this takes place under the cover of certificate-pinned SSL with

secure cipher choices. But one of the features of the ONE-KEY system

is that if the tool is near any ONE-KEY app, even if that app user is

not the owner of a tool it detects, it will send a transaction to the

Milwaukee Tool website with the GPS coordinates of the tool.

The first item is hard-coded in the ONE-KEY app, as stated in our

vulnerability section. The second item requires a working email

address, available from a free email service. These are enough to

acquire the third item - a bearer token.

The final element is located in the Bluetooth name of the device. In

our report, we’ve mentioned determining the device is a Milwaukee

Tool because of the “MKE” in its Bluetooth name, which with our drill

is “0006007C9FMKE.” The unique ID for this particular drill is the first

part - “0006007C9F.” Armed with these elements, one can feed false

GPS coordinates.

20

There’s our drill, the mpbid value.

To obtain the bearer token, you have to log in, both with a working end user account and

password as well as the master user/password. I was not able to confirm that if one logs out

with the app that the bearer token is automatically expired, as this requires leaving the world of

traffic sniffing and start getting into sketchy territory - actually using the master user/password

outside of the app (technically kids, this is code execution on a web server that isn’t yours, and

is a felony). Now maybe I might push things a bit and whip out the grey hat if we were talking

about a device with life and death consequences, but I am not willing to risk a felony while

clocked in at work, especially over a power tool.

Adjusting Other Tool Values in the Milwaukee Tool Website
In theory, there may be other transactions besides last known GPS location that can be

adjusted. Changes to tool profiles are possible without a user_id, as are acquiring any assigned

“guest” account information including the password, although these appear to require additional

elements that could not be obtained legally during testing. As there was no attempt made to

simply log into the website with these credentials and start poking around, there was no attempt

made to look for other transactions that did not require a user_id, except by those observed

during regular sniffing.

21

Vendor Response
For each reported vulnerability listed in the Vulnerability Summary section above, this is the

vendor response to each one. The vendor responded to CERT, and this is what was said about

each reported vulnerability.

On “Privileged Stored Credentials”

" The "master" credential that was found is only used to identify the type of

client to the authentication server so it can determine the type of bearer

token to provide. It is used in conjunction with the user's username and

password to provide that token. This API Token does not provide a user

access to anything else. Also yes, any user or attacker can acquire a

bearer token by signing up for a free Milwaukee account. All bearer tokens

limit the user to only their data or other publicly accessible data."

On “Stored Bearer Tokens with Long Expiration Times”

" This is correct, we don't expire the bearer tokens because we don't want to force

the user to log in frequently. That said, there are circumstances where we do

invalidate the token on the server side (e.g. password change, permission changes,

etc) which forces the user to log in again and acquire a new bearer token."

On “Remote Device Fingerprinting”

" Understood, I'll need to research this more with our EE team who works

on the Bluetooth firmware; my team focuses on the software."

On “GPS Reporting Subject to Spoofing”

" This is also correct and something we are always working to improve. The

primary function of the tool tracking feature is to help the user remember

which jobsite their tool is currently at or last used at. That said, we do

have plans to improve the validation of the client sending updated location

information; however, it will not be in the immediate next version released."

22

Appendix A:
Bypassing
Certificate Pinning
Certificate pinning prevents performing MITM attacks against HTTPS traffic. In many cases,

you can use mitmproxy (mitmproxy.org) to sniff HTTPS, but when certificate pinning is set up

properly, you cannot. However, with a few modifications to an Android version of the app, you

can adjust the logic to ensure certificate pinning is bypassed. Here are the steps to do this.

0. Prep
We will assume you have access to a Linux system, Ubuntu is a popular distro around Duo Labs.

You will need to make sure apktool, adb, and OpenJDK (or JRE) for both keytool and jarsigner

are installed on your system. If you are unsure how to do this, use Google. There is a decent

chance OpenJDK is already installed on your system, and if you run into trouble, continue

Googling. One could write an entire lengthy tutorial or blog post on dealing with Java installation,

and several people already have, so go look for one of those. Also, make sure your Android can

access Developer Options, and turn on the switch next to USB debugging. Again if you do not

know what this is, Google is your friend.

1. Download and Disassemble
Download the version of the APK you wish to experiment on from a reliable source -

apkpure.com is popular around here. Use the apktool tool to disassemble the APK:

fang:~ sn$ apktool d the_example.apk -o the_example_apk_disassembled

2. Modify the Disassembly
Find the proper spot to modify. Searching the smali code in the smali subdirectory for

keywords such as “X509TrustManager,” “cert,” “pinning,” etc. should do it. The file we

need to modify contains methods named “checkClientTrusted,” “checkServerTrusted” and

“getAcceptedIssuers.” Add the “return-void” opcode before the first line of each of these three

methods. The “return-void” statement is a Dalvik opcode to return ‘void’ or null, and in essence,

with all three disabled, you have removed certificate pinning.

https://apkpure.com/

23

3. Reassemble the Modified APK
Reassemble the modified APK using apktool:

fang:~ sn$ apktool b the_example_apk_disassembled/ -o the_example_modified.

apk

4. Sign and Install the APK
Before the modified APK can be installed onto a device it needs to be cryptographically signed.

Here are the quick steps to do this:

Generate the private key:

fang:~ sn$ keytool -genkey -v -keystore my-release-key.keystore -alias

alias_name -keyalg RSA -keysize 2048 -validity 10000

Sign the APK using the generated private key:

fang:~ sn$ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1

-keystore my-release-key.keystore the_example_modified.apk

If you get the “Please specify alias name” use the following command instead:

fang:~ sn$ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1

-keystore my-release-key.keystore the_example_modified.apk alias_name

The modified APK should now be signed for 10,000 days and ready to be installed onto the

Android device. Attach the Android to the computer’s USB port and run:

fang:~ sn$ adb install the_example_modified.apk

After installing the modified APK, it is possible to MITM the HTTPS communications via the Wi-

Fi connection - the easiest method is to use mitmproxy running as a transparent proxy.

24

Appendix B:
Disclosure Process
Normally when reporting issues involving security, one contacts the listed address

for reporting such items (usually security@, secure@, or something similar). None for

Milwaukee Tool were found, however via web searching there were numerous references

to onekeyfeedback@milwaukeetool.com as a contact for the ONE-KEY support email

address. In reviews on Google Play for installing apps on the Android platform, the email

address was used involving feature usage and questions about various items, so this was

deemed the main contact for the app itself.

Steps were taken to ensure that during the process of reviewing and testing the application,

none of the articles listed in the Legal document were violated.

Here is the timeline for the vulnerability disclosure process.

 z 2017 Feb 2 Initial contact with vendor via

onekeyfeedback@milwaukeetool.com with question about app

permissions and if this was the correct address to report security

issues. No response.

 z 2017 Feb 10 Full report of flaws sent to onekeyfeedback@milwaukeetool.com.

As it is late in the afternoon on a Friday, the 90 day clock for

disclosure starts Monday.

 z 2017 Feb 13 90 day countdown begins.

 z 2017 Feb 20 No response as of yet so tried using the web form on the ONE-KEY

FAQ page (milwaukeetool.com/ONEKEY/Support) but it did not

“work”. Used the generic form at milwaukeetool.com/contact and

asked if the onekeyfeedback@milwaukeetool.com address was

the correct address for reporting security vulnerabilities.

 z 2017 Feb 27 Called 1-800-SAW-DUST for assistance since I have not received

any response to contact via email or web form. Was transferred to

a second level technician, where I asked for a contact for reporting

security issues with their products. I spoke to a gentleman named

Steve who said he would pass my contact info on to the ONEKEY

department, and they would contact me.

mailto:onekeyfeedback@milwaukeetool.com
https://www.milwaukeetool.com/legal
mailto:onekeyfeedback@milwaukeetool.com
mailto:onekeyfeedback@milwaukeetool.com
https://www.milwaukeetool.com/ONEKEY/Support
https://www.milwaukeetool.com/contact
mailto:onekeyfeedback@milwaukeetool.com

25

 z 2017 Mar 2 No response, called 1-800-SAW-DUST back to try again. Waited on

hold for 22 minutes, was disconnected.

 z 2017 Mar 3 An attempt at contact in a public forum. I wrote a 3 out of 5 star

review on Google Play, stating that I had found some security

issues, pointed out the contact above, and asked for proper contact

information. I did not state whether the security issues were severe

or not, just that they’d probably want to address them. No response.

 z 2017 Mar 20 Still no response. I really do not want an IoT-type vendor’s initial

contact with the security community to be negative, so instead of

just waiting for the clock to run out, I have reported the issue to

CERT via the cert@cert.org address. They have a usual wait time

of 45 days, which lines up with where we are with our timeline.

 z 2017 Mar 21 Received a response from CERT (tracking with VU#955683). They

will attempt to reach the vendor, and will keep me informed as to

their progress.

 z 2017 Apr 14 CERT has made contact with the vendor via Twitter, will copy me in

on future communications.

 z 2017 Apr 21 CERT received a reply that in part stated “Any details that you can

share about your discovery would be much appreciated as security

of our system and users' data is very important to Milwaukee.” They

replied with the details of the four issues, and recommended the

creation of a “security@” email alias for future contacts regarding

security issues.

 z 2017 May 1 Contacted CERT and asked if they had heard anything.

 z 2017 May 4 Star Wars day. CERT advised no word from the vendor, they will

contact them and advise that disclosure is imminent. Will plan for

next week unless the vendor replies with progress.

 z 2017 May 5 CERT advised that the vendor responded to their request for an

update and has asked for more time, citing the April 14th twitter

message as first contact they were aware of. A representative

named Chad from Milwaukee Tool has been given my contact

info and told to contact me directly. All vulnerabilities have been

confirmed by the vendor, hoping for a meeting to straighten things

out.

mailto:cert@cert.org

26

 z 2017 May 13 Ninety day mark.

 z 2017 May 16 Final attempt, contacted Chad via the email supplied from CERT,

explained our intent to publish our findings.

 z 2017 May 23 No response. Will start the wheels in motion for publishing.

 z 2017 May 24 Notified CERT of intentions, asked for an update on CVE IDs. CVE

IDs CVE-2017-3214 and CVE-2017-3215 were assigned to issue 1

and 2 respectively.

 z 2017 Jun 6 Notified CERT of date to publish, and URL of main blog post when it

is published. Publish date is June 19, 2017.

 z 2017 Jun 19 Published report.

27

Mark Loveless
Senior Security Researcher

@simplenomad

Mark Loveless is a Duo Labs researcher who also goes by the name

Simple Nomad on the interwebs. He is not overly paranoid in spite of

the fact that evil alien robots are stealing his luggage when he travels.

Duo Labs
duo.com/labs

@duo_labs

Duo Labs is the security research team at Duo Security. Duo Labs is

half the reason Duo Security has a legal team. Check out their other

research and follow them on the twitter.

The Trusted Access Company

Our mission is to
protect your mission.
Experience advanced two-factor authentication, endpoint visibility,
user policies and much more with your free 30 day trial.

Try it today at duo.com.

Duo Security makes security painless, so you can focus on what’s

important. Our scalable, cloud-based Trusted Access platform

addresses security threats before they become a problem, by verifying

the identity of your users and the health of their devices before they

connect to the applications you want them to access.

Thousands of organizations worldwide use Duo, including Facebook,

Toyota, Panasonic and MIT. Duo is backed by Google Ventures, True

Ventures, Radar Partners, Redpoint Ventures and Benchmark. We’re

located from coast to coast and across the sea.

Follow @duosec and @duo_labs on Twitter.

http://duo.com
https://duo.com/product
https://twitter.com/duosec
https://twitter.com/duo_labs

